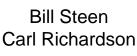
Evaluation of Dry Sorbent Technology for Pre-Combustion CO₂ Capture

(FE-0000465)

Bill Steen URS Group


2012 DOE/NETL CO₂ Capture Technology Meeting

Pittsburgh, PA • July 12, 2012

M. Rostam-Abadi Hong Lu Yongqi Lu

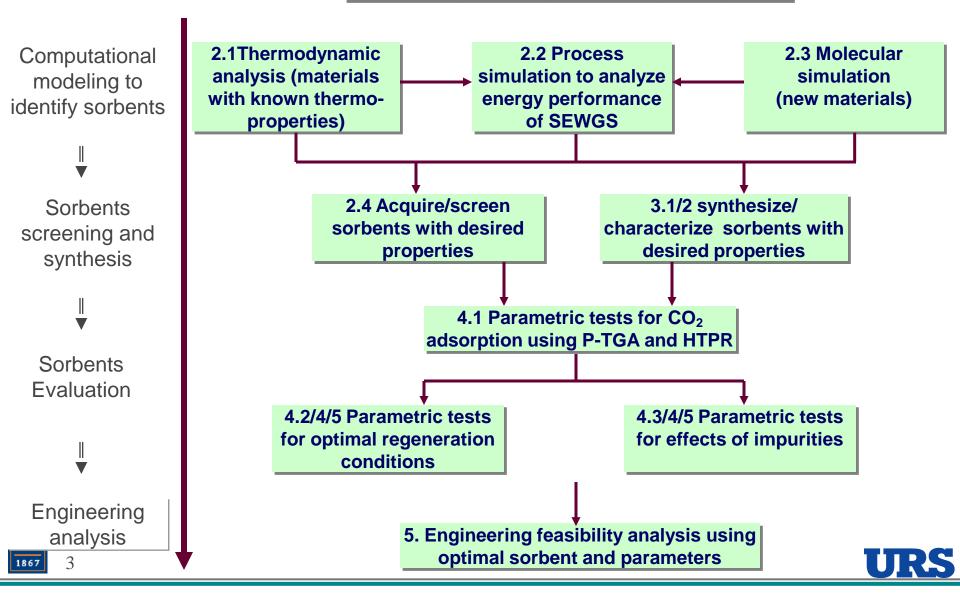
Elaine Everitt

Joe Hirsch

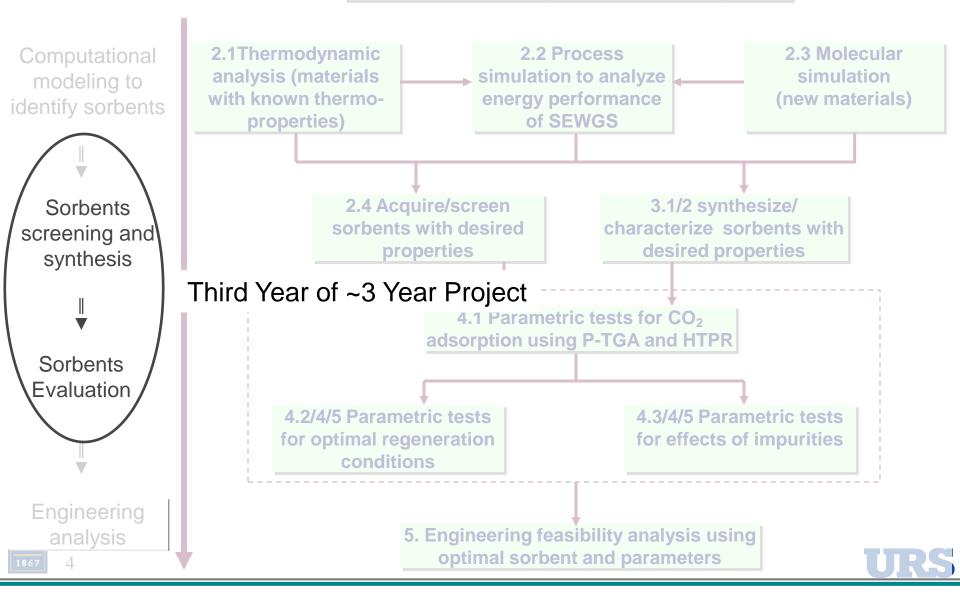
Project Objectives and Scope of Work

Objective

 Identify, develop, and optimize engineered sorbents for a process that combines CO₂ capture with the water gas-shift (WGS) reaction


Scope of Work

- Thermodynamic, molecular and process simulation modeling to identify/predict optimal sorbent properties and process operating conditions
- Synthesis and characterization of sorbents
- Experimental evaluation of sorbents for CO₂ adsorption and regeneration
- Techno-economic analysis

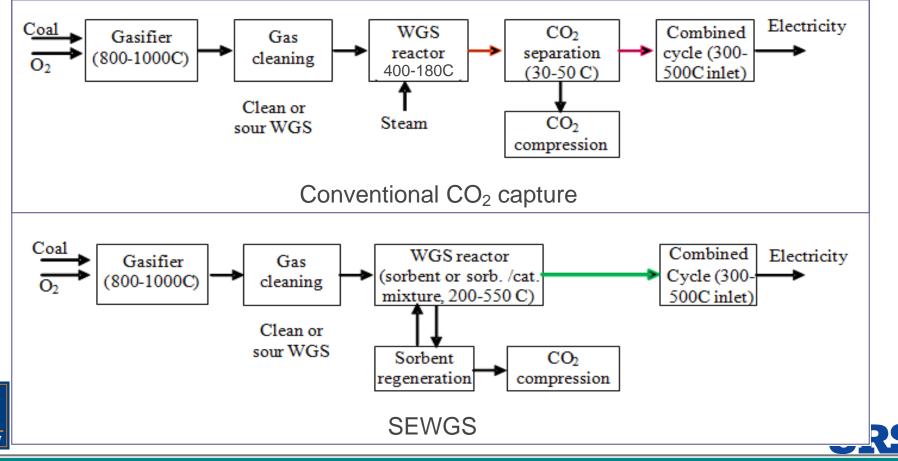

Research Tasks

1. Project management and planning

Research Tasks

1. Project management and planning

Technology Fundamentals/Background


IGCC + SEWGS vs. Conventional IGCC

 $CO + H_2O = CO_2 + H_2$

Exothermic reaction

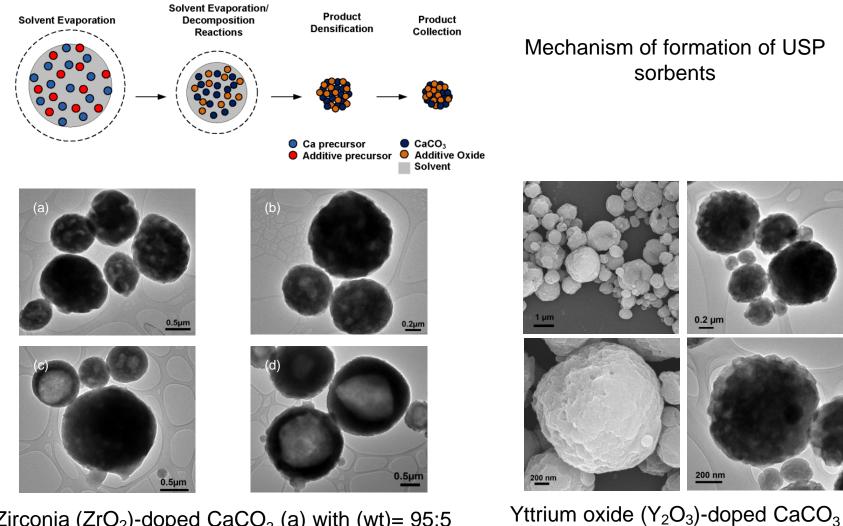
Kinetically limited at low temperatures, multiple stages / temperatures required

SEWGS can achieve high CO conversion at high temperature

IGCC-SEWGS Advantages

- High CO conversion with reduced steam addition
- No or limited WGS catalyst use
- High quality heat usable for generating high quality steam
- Limited gas cooling/reheating requirement downstream
- No separate CO₂ capture unit required
- Sorbents are key, an ideal sorbent:
 - High capacity, selective
 - Adsorb at T > 300 C
 - Regenerate at P > 1 bar
 - Minimal deactivation
 - Thermally and mechanically stable

Progress and Current Status

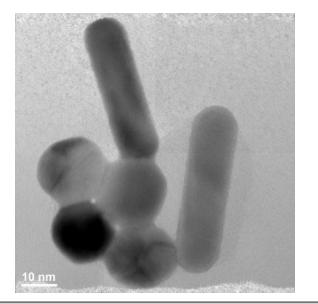


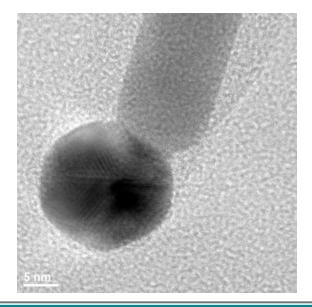
Current Status Overview

- Computational Modeling
 - <u>Thermodynamic Modeling</u>: down-selected from 40+ to 7 'optimal' sorbents
 - <u>Process Simulations</u>: mass and energy balance comparison for SEWGS vs conventional WGS / CO₂ capture, focused on 7 'optimal' sorbents
 - <u>Molecular Simulations</u>: investigated morphology, sintering, dopants, impurities
- Sorbent Preparation
 - <u>Ultrasonic Spray Pyrolysis</u>: added ESP for capture, hollow structures
 - Flame Spray Pyrolysis: high surface area, scalable
 - <u>Molecular Alloying</u>: energetic synthesis process
- Sorbent Evaluation
 - <u>Analytical Characterization</u>: SEM, TEM, etc
 - <u>TGA</u>: workhorse screening technique, studies at relevant P_{CO2}
 - <u>High Temperature, High Pressure Reactor Studies</u>: laboratory simulated, closest to real world conditions short of pilot studies
- Techno-Economic Study

Task 3: USP Sorbents

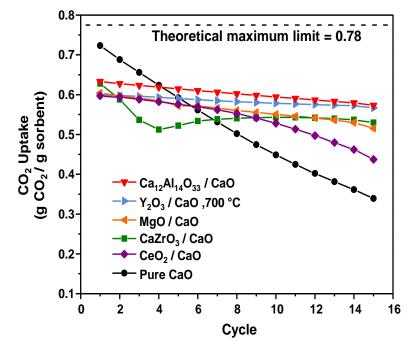
Zirconia (ZrO₂)-doped CaCO₃ (a) with (wt)= 95:5 wt% CaO: CaZrO₃; (b) 90:10, (c) 80:20, (d) 66:34


(20:80 wt% Y₂O₃:CaO)

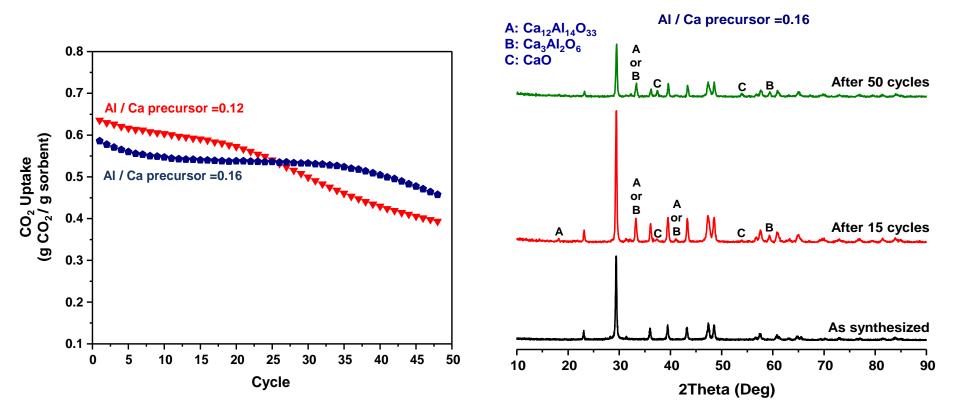


Task 3: FSP Sorbents Synthesized

- Non-porous, FSP nanoparticle sorbents (>20 sorbents)
 - CaO, ZrO₂/CaO, MgO, MgO/CaO, ZrO₂/MgO
- Synthesized at different conditions (composition, precursor type, precursor/solvent ratio, gas flow, etc)

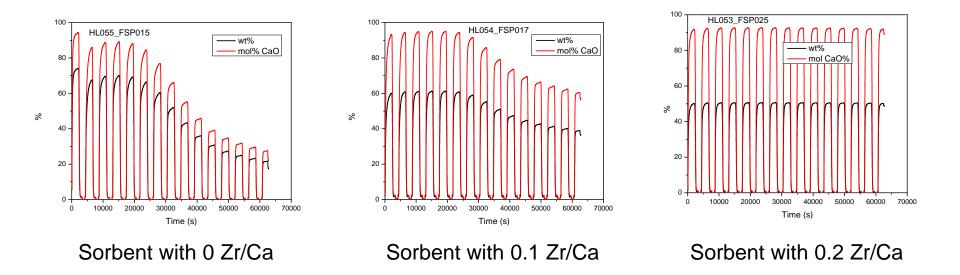

FSP sorbent	BET surface area, m ² /g	d _{BET} , nm
CaO	54	33
ZrO ₂ /CaO (1:10)	43	40
ZrO ₂ /CaO (1:1)	21	71
MgO/CaO (1:10)	28	64

Task 4: 15-Cycle CO₂ Adsorption Performance of USP Sorbents

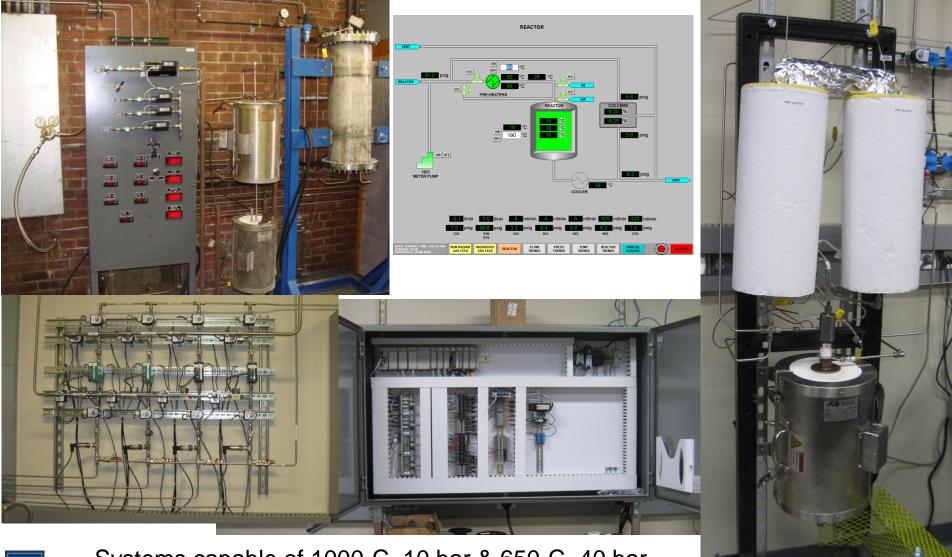

Carbonation at 650 $^\circ\text{C}$ for 30 min in CO_2 and calcination at 900 $^\circ\text{C}$ for 5 min in N_2

- Reagent grade CaCO₃ degraded quickly
- AI, Zr, Y, Mg doped CaCO₃ composite sorbents were significantly more stable than pure CaCO₃

Task 4: 50-Cycle CO₂ Adsorption Performance of USP Sorbents


- Increasing AI/Ca weight ratio in sorbent improved performance
- Sorbent stability needs to be tested in longer term cycling

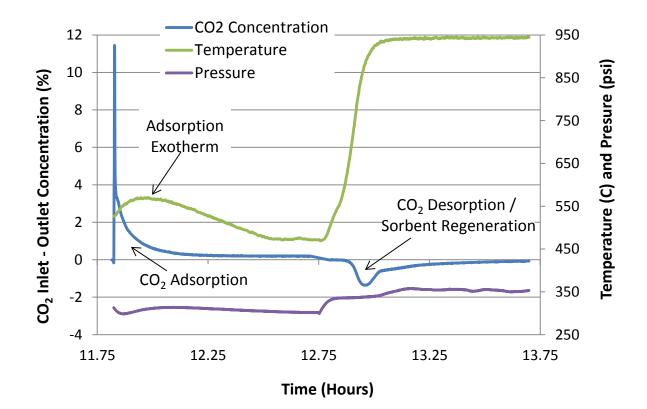
Task 4: Multi-Cyclic CO₂ Adsorption Performance of FSP Sorbents


	0 Zr/Ca		0.1 Zr/Ca		0.2 Zr/Ca	
	CO ₂ uptake	CaO molar	CO ₂ uptake	CaO molar	CO ₂ uptake	CaO molar
	g/g sorbent	conv. %	g/ g sorbent	conv. %	g/ g sorbent	conv. %
1 st cycle	0.74	94	0.60	93	0.50	91
15 th cycle	0.21	27	0.39	60	0.50	91

Carbonation and calcination of FSP sorbents

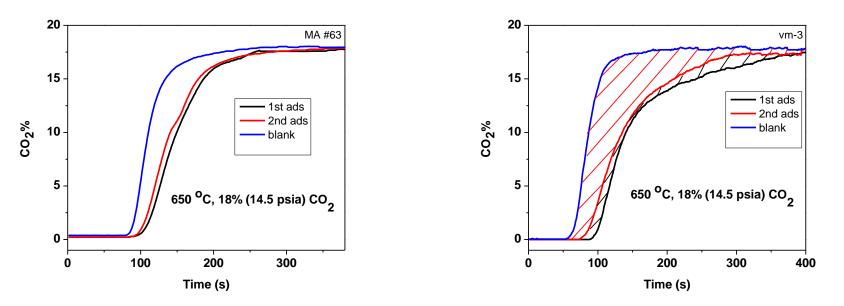
(Black curves: % weight change (g CO₂/g sorbent), red curves: % CaO molar conversion

Task 4: High Temperature, High Pressure Reactor Studies



15

Systems capable of 1000 C, 10 bar & 650 C, 40 bar with corrosive / toxic impurities (e.g., NH_3 , H_2S)

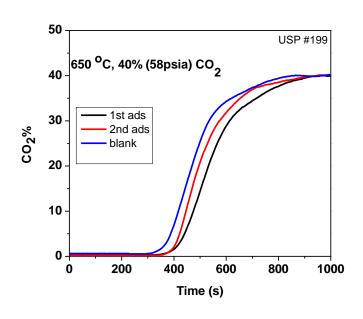

Task 4: Sorbent Testing in HTPR

- vm-3: 53:44 wt% calcite: dolomite, natural limestone
- CO₂ (8%) in N₂, 300 psi and 500 C
- Regeneration in pure N₂, temperature swing
- Adsorption exotherm evident

Task 4: Sorbent Testing in HTPR

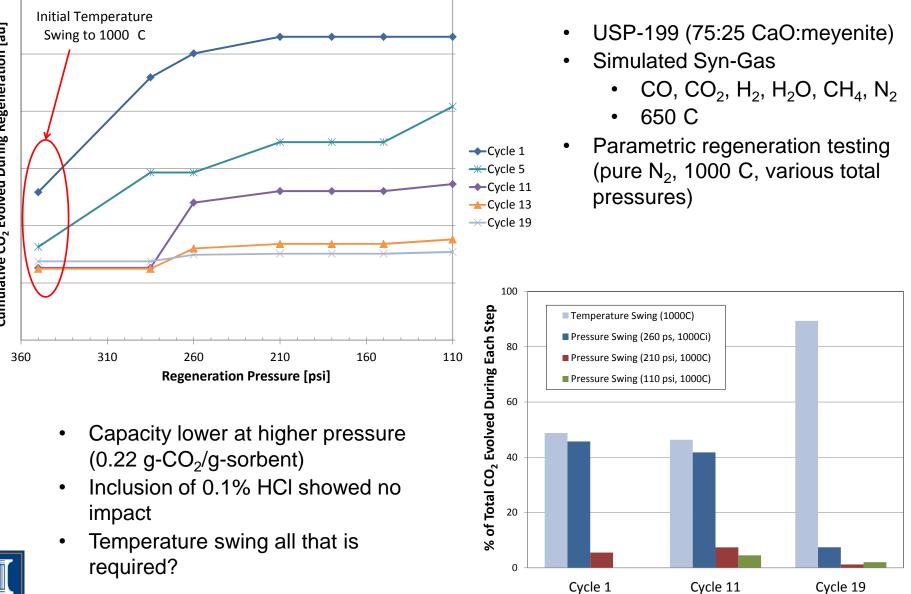
Samples	MA #63	vm-3
Capacity of 2 nd cycle: capacity of 1 st cycle	83%	80%

Sample MA #63: 77:23 wt% CaO: MgO (mechanical alloying method)


Sample vm-3: 53:44 wt% calcite: dolomite (natural limestone)

Sorbent Tests for CO₂ Adsorption at P_{CO2} = 58 psia (4 bar) and T = 650°C

	USP#199	MA#63	vm-3
Capacity of samples	75:25 wt%	77:23 wt%	53:44 wt%
	CaO:meyenite	CaO:MgO	calcite:dolomite
1 st cycle, g-CO ₂ /g-sorbent	0.67	0.45	0.45
2 nd cycle, g-CO ₂ /g-sorbent	0.33	0.20	0.12
Ratio of 2 nd cycle : 1 st cycle	50%	44%	26%



- P_{CO2} of 4 bar is equivalent to concentration level of CO₂ in syngas entering SEWGS process
- Sorbent degraded more quickly at $P_{CO2} = 4$ bar than at 1 bar
 - Degradation different at higher pressures
 - Some FSP sorbents have shown better performance at higher pressures, achieve stable capacity
- Engineered sorbents perform better than natural limestone

Task 4: High Pressure Testing

Summary

- >20 USP and >20 FSP sorbents synthesized
 - Sorbent synthesized with controlled morphology and structure (size, hollow structure, high BET, etc.)
 - AI, Zr, and Y-doped calcium-based sorbents much more stable over multiple test cycles than pure CaCO₃
- Sorbents screened in TGA experiments and tested in high pressure environments
 - Engineered sorbents perform better than natural materials
 - Capacity decreases with increasing pressure (evidence that it does stabilize)
 - HCI does not appear to impact USP sorbents
 - Regeneration conditions probed

Plans for Future Work

- Synthesis of WGS catalyst–CO₂ adsorption hybrid materials
- CO₂ adsorption and combined CO₂ adsorption + WGS of selected sorbents using the HTPR setup
- Continue impurity testing and parametric regeneration
 optimization
- Long term tests on select sorbents
- Techno-economic Analysis
- Final Report

- Continued lab scale HTPR testing, scale up
- Further address reactor design, sorbent attrition, heat management, regeneration, etc.

Acknowledgments

- U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL), through Cooperative Agreement No. DE-FE-0000465
- Illinois Department of Commerce and Economic Opportunity (IDCEO), through the Office of Coal Development (OCD) and the Illinois Clean Coal Institute (ICCI) under Contract No. 10/US-2

